Acute Lymphoblastic Leukemia Diagnosis Employing YOLOv11, YOLOv8, ResNet50, and Inception-ResNet-v2 Deep Learning Models

arXiv:2502.09804v1 Announce Type: cross
Abstract: Thousands of individuals succumb annually to leukemia alone. As artificial intelligence-driven technologies continue to evolve and advance, the question of their applicability and reliability remains unresolved. This study aims to utilize image processing and deep learning methodologies to achieve state-of-the-art results for the detection of Acute Lymphoblastic Leukemia (ALL) using data that best represents real-world scenarios. ALL is one of several types of blood cancer, and it is an aggressive form of leukemia. In this investigation, we examine the most recent advancements in ALL detection, as well as the latest iteration of the YOLO series and its performance. We address the question of whether white blood cells are malignant or benign. Additionally, the proposed models can identify different ALL stages, including early stages. Furthermore, these models can detect hematogones despite their frequent misclassification as ALL. By utilizing advanced deep learning models, namely, YOLOv8, YOLOv11, ResNet50 and Inception-ResNet-v2, the study achieves accuracy rates as high as 99.7%, demonstrating the effectiveness of these algorithms across multiple datasets and various real-world situations.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *

Retour en haut